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Earthquake phenomenology exhibits a number of power law distributions including the Gutenberg-Richter
frequency-size statistics and the Omori law for aftershock decay rates. In search for a basic model that renders
correct predictions on long spatiotemporal scales, we discuss results associated with a heterogeneous fault with
long-range stress-transfer interactions. To better understand earthquake dynamics we focus on faults with
Gutenberg-Richter-like earthquake statistics and develop two universal scaling functions as a stronger test of
the theory against observations than mere scaling exponents that have large error bars. Universal shape profiles
contain crucial information on the underlying dynamics in a variety of systems. As in magnetic systems, we
find that our analysis for earthquakes provides a good overall agreement between theory and observations, but
with a potential discrepancy in one particular universal scaling function for moment rates. We primarily use
mean field theory for the theoretical analysis, since it has been shown to be in the same universality class as the
full three-dimensional version of the model �up to logarithmic corrections�. The results point to the existence
of deep connections between the physics of avalanches in different systems.
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I. INTRODUCTION

Earthquake phenomenology is characterized by several
power law distributions. The most famous of these are the
frequency-size distributions �i.e., histograms� of regional and
global earthquakes �1,2�, and the modified Omori law for the
aftershock decay rate around large rupture zones �3,4�. Using
the seismic moment M0 for the earthquake size, the
frequency-size distribution �or moment histogram� has the
form �e.g., �5��

n�M0� � M0
−1−� �1�

where M0��i�ui�Ai with �ui and �Ai being the local slip
and rupture area during an earthquake, respectively. A re-
lated, more commonly used form in terms of earthquake
magnitude M is

ln�n�M�� = a − bM �2�

where n�M0�dM0=n�M�dM, the constant a characterizes the
overall rate of activity in a region, and the b value gives
the relative rates of events in different magnitude ranges.
Using the observed moment-magnitude scaling relation
M �2/3 ln�M0� for large earthquakes �5,6,2�, the exponent �
of �1� is related to the b value of �2� as b=1.5�. The modi-
fied Omori law for aftershock decay rates is

�N/�t � K/�t + c�p �3�

where N is the cumulative number of aftershocks, t is the
time after the mainshock, and K, c, and p are empirical con-

stants. The exponents in �1� and �3� are stable for data col-
lected over large space-time domains, with some clear devia-
tions from global averages related to faulting type and
regional properties �2�. For example, the b values of strike-
slip, thrust, and normal earthquakes with depth �50 km in
the global Harvard catalog are about 0.75, 0.85, and 1.05,
respectively �7�. �Alternatively, Ref. �8� concludes that most
of the variability is due to systematic variations in the corner
moment required to maintain a finite energy or moment flux.�
As another example, regions with high heat flow often have
short aftershock sequences with relatively large exponent
�e.g., p�1.25�, while regions with low heat flow have long
aftershock sequences with low exponent �e.g., p�0.9� �3,4�.
The association of earthquake statistics with power law rela-
tions like Eqs. �1� and �3� led some to suggest that earth-
quake dynamics is associated with an underlying critical
point �9–13�. There are also other independent pieces of evi-
dence that earthquakes are near-critical-point systems �14�,
e.g., the small and relatively scale-invariant stress drop and
the ease with which earthquakes can be triggered by man-
made stress perturbations. Power law distributions, however,
can be generated by many other mechanisms �15,16� and
it is important to develop criteria that can provide stronger
evidence for or against the association of earthquakes with
criticality.

Recently, enough data have been collected to extract sta-
tistics of earthquakes on individual fault zones occupying
long �order 100 km� and narrow �order 10 km� regions of
space. Wesnousky and collaborators �17,18� found that the
frequency-size statistics of earthquakes on highly irregular
fault zones, with many offsets and branches, like the San
Jacinto fault in California, are also described by the
Gutenberg-Richter power law relation up to the largest
events. However, relatively regular fault zones �presumably
generated progressively with increasing accumulated slip
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over time�, such as the San Andreas fault in California, dis-
play power law frequency-size statistics only for small
events. These occur in the time intervals between roughly
quasiperiodic earthquakes of a much larger size that is re-
lated to large-scale dimensions of the fault zone �5,17–20�.
�If the ratio of the mean divided by the standard deviation of
the distribution of time intervals between characteristic
earthquakes is larger than 1, the distribution is referred to as
quasiperiodic �20�.� Earthquakes of intermediate magnitude
are typically not observed on these faults �other than, per-
haps, during aftershock sequences�. The corresponding
frequency-size statistics are called the “characteristic earth-
quake” distribution �5,17�.

Previously these two types of behavior on individual fault
zones have been modeled as statistics close to and far from
an underlying critical point �9,21�, using a model for a strike-
slip fault that incorporates long-range interactions and strong
heterogeneities �19,20�. The different dynamic regimes were
associated with a competition between failure-promoting ef-
fects of elastic stress transfer or dynamic weakening, and the
opposing effect of strength inhomogeneities in the fault
structure. Fisher et al. �9� found that near the critical point
the frequency-size statistics follow a power law distribution
�with a cutoff at large magnitude�, with the same scaling
exponent as for observed data for strike-slip faults �i.e., a b
value of 0.75�. A similar form of frequency-size statistics and
predicted b value were obtained also for a critical parameter
value in a stochastic branching model �22�.

To provide an improved understanding of earthquake dy-
namics that can suggest additional observables, we focus on
faults with Gutenberg-Richter-like earthquake statistics �i.e.,
near-critical behavior� and develop two universal scaling
functions associated with mean moment-rate time profiles at
either fixed total moment or fixed total earthquake duration.
Universal scaling functions �or shape profiles� give important
information on the underlying dynamics, and may be found
in solar flares in astrophysics �23�, price fluctuations in fi-
nancial markets �24�, Barkhausen noise in magnets �25�, and,
as shown here, also in earthquake phenomenology. If the
behavior of fault zones with earthquakes following the
Gutenberg-Richter statistics is indeed critical, then the
shapes of these functions should be as universal as the expo-
nent � in Eq. �1�. Comparing the scaling functions in our
earthquake model to observations constitutes a much stron-
ger test of the theory than merely comparing a discrete, finite
set of critical exponents.

In the following we compute the scaling functions for
both model predictions and observational data and compare
the results. In Sec. II of the paper we review the model. In
Secs. III–V, we extend the model, while introducing an ex-
tended phase diagram for the model dynamics, and discuss-
ing the scaling behavior on long length scales. In Sec. VI we
introduce the universal scaling functions and their scaling
forms, and in Sec. VII we extract the functions from both
simulation and observational data. Finally, in Sec. VIII we
discuss the results and emerging new questions.

II. EARTHQUAKE MODEL

The model we use was developed originally by Ben-Zion
and Rice �19,20�, who suggested that a narrow irregular

strike-slip fault zone of horizontal length L and vertical depth
W may be represented by an array of N�LW cells in a
two-dimensional plane, with constitutive parameters that
vary from cell to cell to model the disorder �offsets, etc.� of
the fault zone structure �Fig. 1�. The cells represent brittle
patches on the interface between two tectonic blocks that
move with slow transverse velocity v in the x direction at a
great distance from the fault. The interaction between cells
during slip events is governed by three-dimensional �3D�
elasticity and falls off with the distance r from the failure
zone as 1/r3. These interactions are sufficiently long range
that scaling in mean field theory �where the interaction range
is set to infinity� becomes exact, up to logarithmic correc-
tions, in the physical fault dimension �d=2� �9,19,20�.

In mean field theory, the local stress �i on a given cell i is
�19�

�i = �J/N��
j

�uj − ui� + KL�vt − ui� �4�

=Jū + KLvt − �KL + J�ui �5�

where ui is the total offset of the cell in the horizontal x
direction, ū=� juj /N is the average displacement, J /N is the
mean field elastic coupling strength between cells, and
KL�1/�N is the loading stiffness �21� of the tectonic blocks
that move far away from the fault with relative velocity v.
Initially the stresses �i are randomly distributed with
�a,i��i��s,i, where �s,i is a fixed local static failure thresh-
old stress and �a,i is the fixed local arrest stress. The distri-
butions of static failure stresses and arrest stresses represent
the heterogeneity or geometrical disorder in the fault system.
The differences between the failure and arrest stresses give
the local distribution of stress drops during brittle failures;
the earthquake dynamics depend only on the stress drop dis-
tribution �no other quenched randomness�. In addition, the
scaling behavior of the system is not sensitive to the exact
form of the distributions as long as they are bounded and

FIG. 1. A planar representation of a 3D segmented fault zone by
a 2D heterogeneous fault embedded in a 3D solid �19,20�.

MEHTA, DAHMEN, AND BEN-ZION PHYSICAL REVIEW E 73, 056104 �2006�

056104-2



�a,i��s,i. We choose a compact distribution for �a,i, such that
p��a,i�=3�W2−4�a,i

2 � / �2W3� for −W /2��a,i�W /2 and 0
outside of these bounds. Also, we look at the low-disorder
limit where W��s,i, where we choose �s,i=1, so all cells will
fail at this point.

The fault is stuck while the stress on each cell is increased
uniformly as d�i /dt=KLv as a result of the external loading
which is increased adiabatically �that is, we take the limit
v→0�. When the stress on a cell reaches its failure threshold
�s,i, the cell slips by the amount

�ui = ��s,i − �a,i�/�KL + J� . �6�

This stress drop is uniformly redistributed to all other cells
�employed in the mean field approximation� by an amount

�� j = �c/N���s,i − �a,i�, j � i , �7�

where c�J / �KL+J� is the conservation parameter which
gives the fraction of the stress drop of a cell that is retained
in the system after it slips �21�. The resulting stress increase
on the other cells can cause some of them to slip as well,
leading to an avalanche of cell slips, or an earthquake.

III. DYNAMICAL WEAKENING AND STRENGTHENING

The model includes dynamic weakening effects during the
failure process �19,20�: after an initial slip in an earthquake,
the strength of a failed cell is reduced to a dynamical value

�d,i � �s,i − 	��s,i − �a,i� , �8�

with 0�	�1 parametrizing the relative importance of dy-
namical weakening effects in the system. This weakening
represents the transition from static friction to dynamic fric-
tion during the rupture and the strength of a failed cell re-
mains at the dynamic value throughout the remainder of the
earthquake. In the time intervals between earthquakes all
failure thresholds heal back to their static value �s,i. Fisher et
al. �9� found that at exactly 	=0 the model produces a power
law distribution of earthquake moments M0 following Eq.
�1�, cutoff by the finite fault size, with an analytical exponent
�=1/2 �Fig. 2�. This corresponds to a b value of 0.75, close

to that associated with observed earthquakes on strike-slip
faults �7�. The power law scaling of the frequency-size sta-
tistics and other variables �9� indicates that the model with
	=0 operates at a critical point. In contrast, for a finite weak-
ening 	�0 the model produces the characteristic earthquake
distribution, with power law statistics for the small events up
to a cutoff moment that scales as

M0
cutof f � 1/	2, �9�

and quasiperiodically recurring large characteristic events
that scale with the fault size �M0��LW�3/2�.

The model can be expanded further to include dynamic
strengthening represented by 	�0. Ben-Zion and Sammis
�26� summarized multidisciplinary observations which indi-
cate that brittle failure of rock has an initial transient phase
associated with strengthening, distributed deformation, and
creation of new structures. Detailed frictional studies also
show an initial strengthening phase associated with the cre-
ation of a new population of asperity contacts �5,27�. In our
model �Fig. 1� we associate 	�0 with regions off the main
fault segments that are in an early deformation stage. To
capture basic aspects of brittle deformation on such regions
in the three-dimensional volume around the main fault �Fig.
1�, we change the model as follows. When any cell i slips
during an earthquake, and thereby reduces its stress by
��i�� f ,i−�a,i, the failure stress � f ,j of every cell j=1, . . . ,N
is strengthened by an amount 			��i /N. Once the earthquake
is complete, the failure stress of each cell is slowly lowered
back to its original value. This represents in a simple way the
brittle deformation that occurs during an earthquake in the
off-fault regions, which are first in a strengthening regime,
compared to the main fault, and then have a weakening pro-
cess. The events that are triggered as the failure stresses are
lowered in the weakening period are referred to as after-
shocks. The occurrence of aftershocks in this version of the
model for off-fault regions is in agreement with the observa-
tion that a large fraction of observed aftershocks typically
occur in off-fault regions �28�. For this version of the model
with 	�0, both the primary earthquakes �i.e., main shocks�
and the triggered aftershocks are distributed according to the
Gutenberg-Richter distribution, up to a cutoff moment scal-
ing as 1/	2. Assuming that the increased failure stress thresh-
olds � f ,i are slowly lowered with time as ln�t� toward their
earlier static values �s,i, and that the stresses are distributed
over a wide range of values, we show analytically in the
Appendix that the temporal decay of aftershock rates at long
times is proportional to 1/ t, as in the modified Omori law of
Eq. �3� with p=1 �3–5�.

Remarkably, the long-length-scale behavior of this model
can be shown �29,30� to be the same as the behavior of the
model given in Eq. �5� with an added “antiferroelastic” term
�−			Jū�:

�i = Jū + KLvt − �KL + J�ui − 			Jū . �10�

In Eq. �10� every time a cell fails, it slips by an amount �ui
which leads to stress loading of the other cells, lessened by
			J�ui /N compared to our original model �Eq. �5��. On the
other hand, in the global strengthening model �described

FIG. 2. Phase diagram of the model �see text and �21� for
details�.
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above� when a cell slips the failure stresses of all cells are
strengthened by 			J�ui /N. On long length scales the global
strengthening of the failure stress has equivalent effects on
the earthquake statistics as the dissipation of the redistributed
stress, up to corrections of order O�1/N�, so the scaling be-
havior for large events of both models is the same. Moreover,
Eq. �10� can be rewritten as

�i = J�1 − 			��ū − ui� + KLvt − �KL + J			�ui. �11�

We can now absorb 			 by defining J�=J�1− 			� and KL�
=KL+J			. Rewriting Eq. �11� with the new definitions, and
dropping the 			 contribution in �KL�−J			�vt since v→0, we
find

�i = J�ū + KL�vt − �KL� + J��ui. �12�

Therefore we recover Eq. �5� with J→J� and KL→KL�. This
amounts to changing the stress conservation parameter c
�from Ref. �21��. For Eq. �12�

c = J�/�KL� + J�� = 1 − 			 �13�

where KL→0 since we are concerned with the adiabatic
limit. We also know �from Ref. �21�� that the cutoff Scf for
the Gutenberg-Richter distribution scales as Scf �1/ �1−c�2.
Thus, from Eq. �13� we find that the cutoff for Eq. �10� will
scale as �1/ 			2.

IV. MAPPING TO SINGLE-INTERFACE MAGNET MODEL

The mean field version of the single-interface magnet
model with infinite-range antiferromagnetic interactions is
given by �31,32�

ḣi�t� = J�h̄ − hi�t�� + H�t� − kh̄ + 
i�h� �14�

where hi�t� is the position of the domain wall, H�t� is the
external driving field, k is the coefficient of the antiferromag-
netic term, and 
i�h� is the pinning field. In the paper by
Fisher et al. �9� it has been shown that the scaling behavior
on long length scales resulting from Eq. �10�, without the
−			Jū term, is the same as that of Eq. �14� without the anti-

ferromagnetic term −kh̄. Furthermore, upon inspection we
see the following correspondence between the single-
interface magnet model �Eq. �14�� and the mean field earth-
quake model �Eq. �10��:

− kh̄ Û − 			Jū . �15�

In other words, the coefficient of the antiferromagnetic
term k plays the same role in the magnet model �Eq. �14�� as
the coefficient of strengthening 			J does in the earthquake
model �Eq. �10��.

V. PHASE DIAGRAM

The regimes with various statistics produced by the model
are summarized by the phase diagram given in Fig. 2. The
range 	�0 corresponds to “mature” localized faults with a
weakening rheology and characteristic earthquake statistics.
The value 	=0 corresponds to “immature” strongly inhomo-

geneous fault zones with Gutenberg-Richter statistics. Fi-
nally, the range 	�0 corresponds to the fracture network
away from the main fault, characterized by strengthening due
to the creation of new structures and associated emerging
aftershocks. It may be surprising that the discussed simple
model can capture many of the essential general features of
earthquake statistics �or other systems with avalanches, such
as driven magnetic domain walls�. This can be understood
through the renormalization group �34,33�, a powerful math-
ematical tool to coarse-grain a system and extract its effec-
tive behavior on long space-time scales. Many microscopic
details of a system are averaged out under coarse graining,
and universal aspects of the behavior on long scales depend
only on a few basic properties such as symmetries, dimen-
sions, range of interactions, weakening or strengthening, etc.
When a model correctly captures those basic features, the
results provide proper predictions for statistics, critical expo-
nents, and universal scaling functions near the critical point.
Consequently, many models that are in the same universality
class lead to the same statistics and exponents �9,21,33,34�.
The universal scaling functions around the critical point, dis-
cussed in the next section, provide additional information
that can be used to distinguish between different models and
universality classes.

VI. MOMENT RATE SHAPES

In this section we focus on fault zones with Gutenberg-
Richter power law statistics, modeled by systems at or close
to the 	=0 critical point. Recent analysis allowed researchers
to obtain the moment rate dm0�t� /dt, which gives the slip on
a fault per unit time during the propagation of earthquake
rupture, for hundreds of large seismic events recorded on
global networks �35,36�. The moment rates are derived from
inversions of teleseismically recorded seismograms on a glo-
bal seismic network �37�. Motivated by works on statistical
physics of magnetic systems discussed in the previous chap-
ter �see also �25,34��, we are interested in studying the event-
averaged moment rate time profile �Fig. 3� for earthquakes
with given total moment M0, denoted by 
dm0�t 	M0� /dt� and
the event-averaged moment rate time profile �Fig. 4� for
earthquakes with given duration T, denoted by

dm0�t 	T� /dt�. Here m0�t 	T� is the �cumulative� moment at
time t of the propagating earthquake of total duration T, and
m0�t 	M0� is the cumulative moment at time t of the earth-
quake of total moment M0. Theoretical analysis of phase
diagrams similar to that shown in Fig. 2 implies that near the
critical point there should be, in addition to scaling expo-
nents, also universal scaling functions �up to a rescaling of
the ordinate and abscissa� �25�. In our model both in mean
field theory and in simulations, the two scalable functions of
interest, 
dm0�t 	M0� /dt� and 
dm0�t 	T� /dt�, obey, respec-
tively, the following scaling relations �9,25,29,38� �up to
negligible logarithmic corrections�:


dm0�t	M0�/dt�/M0
1/2 � f�t/M0

1/2� �16�

and


dm0�t	T�/dt� � g�t/T� . �17�
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We determined these scaling functions from correspond-
ing mean field results for magnets, using the fact that both
the mean field version of the Ben-Zion and Rice model of
Eq. �5� �9,21� and the simulation with the full 3D stress
transfer along the fault �up to logarithmic corrections� are in
the same universality class �i.e., have the same universal be-

havior on long length scales� as the above mentioned mean
field model for domain wall motion in magnets.

VII. EXPONENTS AND DATA COLLAPSES

We compare the observation results with our model and
find remarkable agreement in most cases. The frequency-
moment distribution D�M0��M0

−1−� of the observed data
�35� has �inset of Fig. 2� three decades of scaling and an
exponent of �=1/2±0.05, in close agreement with the
model near 	=0. The deviation from a power law distribu-
tion at the low-moment range is associated with the reduced
resolution of the observational network for small events. In
mean field theory the universal scaling function f�x� in Eq.

�16� is of the exact form �39� fmf�x�=Axe−Bx2/2 with nonuni-
versal constants A=B=1. In Fig. 3 we present a collapse of
the observational data of 
dm0�t 	M0� /dt� for four different
values of M0 to obtain the corresponding function fexp�x� for
observations with x= t /M0

1/2. The observational curves not
only collapse, and are therefore universal, the mean field
exponent 1 /2 in the scaling variable x is in excellent agree-
ment with observations. We fit the functional form fmf�x�
with A=4 and B=4.9 to the collapse of the observed data;
fexp�x� deviates from fmf�x� for small values of the ordinate.

In mean field theory, the function g�x� of Eq. �17� is of the
symmetric form gmf�x�=Ax�1−x�, where A is a nonuniversal
constant. In Fig. 4 we collapse observational data for

dm0�t 	T� /dt� for three values of T to obtain the function
gexp�x� with x= t /T. Again we find that the curve collapses
well, even though only small data sets were available, and
the exponent of 1 obtained from the collapse is in excellent
agreement with mean field theory.

We also plot the mean field scaling function gmf�x� with
A=80. The results show that while the scaling exponents
agree, there are notable differences between the observa-
tional function gexp�x� and the mean field function gmf�x�,
especially for small values of the ordinate. We checked that
finite-size effects do not play a role in gmf�x� �or in fmf�x� for
that matter�. Also, we find that the mean skewness coefficient
for the gexp�x� curves is 0.878 and the mean standard error of
skewness is 0.705: since twice the standard error is greater
than the absolute value of the skewness, the asymmetry is
not statistically significant. Therefore more observational
work with a larger data set is required to verify the moment
rate shape asymmetry and clarify its origin. An asymmetry
may result from a rupture process that begins with a failure
of a large asperity, from finite fault size effects if the rupture
process slows down once the rupture has traversed the fault
in one direction, or from contributions of early aftershocks.

VIII. DISCUSSION

The employed earthquake model �19,20� was shown in
the past to have a critical point at 	=0 and additional dy-
namic regimes for 	�0 �9,21� compatible with observed
frequency-size statistics of earthquakes on individual fault
zones �17,18�. We have generalized the theoretical analysis
to include a strengthening regime 	�0 with aftershocks, and

FIG. 3. A collapse of averaged earthquake pulse shapes,

dm0�t 	M0� /dt�, with the size of the moment M0 in N m within
10% of each size given in the legend. In order to obtain each col-
lapsed moment rate shape, five to ten earthquakes were averaged
for each value of M0. The collapse was obtained using the mean
field scaling relation �9�: 
dm0�t 	M0� /dt� /M0

1/2� f�t /M0
1/2� �see text

Eq. �16��. In our mean field theory the universal scaling function is
fmf�x�=Axe−Bx2/2 where x= t /M0

1/2. We plot this functional form
�bold curve� with A=4 and B=4.9. Inset: The raw data and the
averaged data �before collapse�.

FIG. 4. A collapse of averaged earthquake pulse shapes,

dm0�t 	T� /dt� with a duration of T �seconds� within 10% �given in
legend�, is shown. The collapse was obtained using the mean field
scaling relation �38�: 
dm0�t 	T� /dt��g�t /T�. In order to obtain
each collapsed pulse shape, two to ten earthquakes were averaged
for each value of T. In our mean field theory the universal scaling
function is gmf�x�=Ax�1−x� with x= t /T. We plot this functional
form �bold curve� with A=80. Note the apparent asymmetry to the
left in the observed data while the theoretical curve is symmetric
around its maximum. Inset: The raw data and the averaged data
�before collapse�.
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derived universal scaling functions around the critical point
	=0. The results provide new tools for data analysis that may
be used to obtain an improved understanding of earthquake
dynamics. The analysis indicates that near 	=0 the model is
in the same universality class as a recent model for domain
wall motion in magnets and we can match the phase diagram
regions 	�0 and 	�0 to those of the corresponding magnet
model �9,32,34,38�. In other words, the two systems are
marked by the exact same universal scaling exponents, uni-
versal scaling functions, and similar phase diagrams. The
model predictions for frequency-size statistics and moment
rates of earthquakes near 	=0 are overall in close agreement
with observational data of relatively large earthquakes re-
corded on the global seismic network �35�. However, the
observed mean moment rate of earthquakes with a given du-
ration T apparently increases with time more rapidly than it
drops off, contrary to the corresponding symmetric model
function. The potential asymmetry in the observed data may
result from a rupture process that begins with a failure of a
large asperity. This is compatible with observations that hy-
pocenter locations tend to be located close to an area on a
fault that produces large moment release �e.g., �40��. As we
explain below, an analogy to magnetic systems suggests that
an asymmetry could potentially also stem from momentary
initial threshold strengthening associated with the creation of
a new population of asperity contacts upon local failure �27�
and followup aftershocks. Further study will be necessary to
clarify this issue.

Theoretical analysis of such a potential asymmetric rup-
ture process requires corrections to the mean field earthquake
model results. Recently it has been shown that the corre-
sponding magnetic domain wall model �25,34� predicts well
the critical scaling exponents for Barkhausen noise experi-
ments in magnets. Significantly, the experimental scaling
function for magnetization avalanches or Barkhausen
“pulses” �25,34�, that is the analog of the moment rate time
profile for fixed earthquake duration of Eq. �17�, shows the
same type of asymmetry that is apparently observed for
earthquakes �Fig. 4�. It has been suggested that the asymme-
try in the function is due to eddy currents in the magnet
�41,42�. Eddy currents have a similar effect in magnets as
transient threshold strengthening would have on earthquakes.
In this paper we have shown how long-term threshold
strengthening �on time scales longer than individual earth-
quakes� leads to aftershocks, which effectively represent an
asymmetry on time scales longer than individual earth-
quakes. This raises the possibility that the origin of this
asymmetry may be similar in both magnets and earthquakes
�42�: in both cases it may be due to a transient force �due to
eddy currents or threshold strengthening respectively� that
counteracts the propagation of an event and thus leads to
asymmetric event profiles that taper off more slowly than
they began. Our study shows that there are important theo-
retical and observational connections between processes in
earthquake and magnetic systems.

A related study of earthquake moment rate shapes was
done by Houston �43� who used a data set similar to the data
of Bilek �35� used here. In order to compare the average
moment rate profiles of these earthquakes, the profiles were
rescaled by two methods: moment scaling and duration scal-

ing. Moment scaling rescales the time axis of the profiles
using assumptions about cracklike scaling of the events
�different from our mean field result�, and then rescales
the height of the profiles so that the area �or moment� under
all profiles is the same. The duration scaling of �43� rescales
the time axis such that all duration-scaled profiles end at
the same reference duration, and then rescales the moment
rates so that all scaled time profiles have the same area
underneath.

Figure 5 shows average moment rate profiles that were
obtained by Houston from moment scaling �top� and dura-
tion scaling �bottom� for data from several subduction zones.
The top plots correspond to 
dm0�t 	M0� /dt� collapsed, and
the bottom plots correspond to 
dm0�t 	T� /dt� collapsed. We
see from the top part in Fig. 5 that overall the moment rate
shapes seem to agree rather well with our predicted mean
field shapes of Fig. 3. Likewise the bottom plots of Fig. 5
appear to agree quite well with the mean field curve of Fig.
4, except for an additional slight asymmetry, with positive
skewness, similar to our result from observations.

In �43� the skewness of the duration scaled moment rate
profiles, i.e., the skewness of the 
dm0�t 	T� /dt� collapses, is
calculated and found to range from 0.12 to 0.36 depending
on the depth of the earthquakes �bigger skewness for greater
depth� and the method used to extract moment rates from
seismograms. Since the statistical error of the skewness is
not given in �43�, we cannot determine if the above skewness
values are statistically significant. It is interesting, however,
that just as in the case of magnets, and in our analysis of the

FIG. 5. Rescaled moment rate versus time profiles of seismic
events determined with moment scaling �top� and duration scaling
�bottom� by �43� �see text�. The data shown are obtained from sev-
eral subduction zones in the indicated geographical locations and
the numbers of earthquakes used for each region are given in
parentheses.
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observational data, the skewness is slightly positive, indicat-
ing that on average earthquakes tend to grow faster than they
die down. The skewness values quoted in �43� are smaller
than the 0.878 value obtained here, though one of them �the
0.36 value for earthquakes at greater depth� is within error
bars.

While overall the shapes of the moment rate profiles look
rather similar for both Houston’s analysis and our mean field
theory results, there are significant differences in the analysis
that can be summarized as follows.

�1� The exponents used in �43� to create the moment-
scaled average profile 
dm0�t 	M0� /dt� differ from the expo-
nents we used. In both cases the x axis is divided by M0

�t and
the y axis is divided by M0

1−�t in order to ensure normaliza-
tion of the curves to a fixed reference moment. In �43� the
exponent value is �t=1/3, while in this paper we use the
mean field value �t=1/2 �see Fig. 3�. The value �t=1/3 in
�43� is associated with cracklike scaling; for cracks the mo-
ment M0 scales with the rupture area A as M0�A3/2 �5�.
Since the rupture area scales with the diameter L of the crack
as A�L2 and the duration T of the earthquake scales with its
diameter as T�L one arrives at the proposed scaling T
�M0

1/3. In �43� it is mentioned, however, that the data would
also be compatible with rescaling the time �or x� axis with an
exponent of �t�0.41, i.e., that T�M0

0.41 for the data. This
scaling is much closer to the mean field prediction T�M0

1/2,
i.e., �t=1/2, that is used in this work.

Our exponent �t=1/2 is derived from the mean field pre-
diction �9� that the duration T of earthquakes in the critical
power law region of Fig. 2 scales as T�M0

1/2. In �9� it is
shown analytically that the moment M0 of earthquakes in the
critical regime scales with the rupture area as M0�A. Since
the rupture area scales, as before, with the earthquake diam-
eter as A�L2, and the earthquake duration scales as T�L,
one obtains for the mean field prediction T�M0

1/2 for critical
earthquakes. Note that for earthquakes which are so large
that their horizontal diameter L is much larger than the ver-
tical width of the fault, one expects the moment to scale as
M0�L. Since again the duration scales as T�L, one obtains
T�M0, i.e. �t=1. The data used here and in �43� apparently
do not fall within this scaling regime.

�2� Our theoretical analysis leads to predictions of both
scaling exponents and entire scaling functions, which can be
compared to data. In contrast, in �43� the shape is obtained
only empirically by averaging rescaled data, and it is depen-
dent on the chosen scaling exponents. Our procedure of com-
paring the theoretical results to data is designed to provide
simultaneously, through a scaling collapse that minimizes de-
viations of individual averaged curves from the collapsed
one, the scaling exponent �t and the entire scaling function.
On the other hand, in �43� the value of �t is obtained from a
separate analysis of duration versus moment of observed
data, and the shape is then obtained empirically, by averag-
ing rescaled data.

�3� For our simulated moment rates, the exponents used
in �43� would not lead to a good collapse, i.e., the deviation
between various rescaled curves would be larger for
�t=1/3 compared to �t=1/2.

Unfortunately, since the available observational data have
large error bars, we cannot determine at present unequivo-

cally, which set of exponents works better. More moment
rate data, especially for many small earthquakes would allow
us to reduce statistical error bars and obtain a more precise
comparison of the scaling functions in theory and experi-
ment. The smaller earthquakes are also more likely to fall
into the critical scaling regime of our mean field prediction.
However, moment rate data are more difficult to obtain for
small earthquakes, as they require greater spatial resolution.
We hope that this study will motivate more observational
work and analysis to answer these questions.

ACKNOWLEDGMENTS

We are grateful to Susan Bilek for giving us the observa-
tional data, and to Gianfranco Durin and Heidi Houston for
helpful discussions. We thank James P. Sethna and Michael
B. Weissman for very helpful discussions and M.B.W. for
first drawing our attention to the possible similarity between
the asymmetric universal scaling function in magnets and
earthquakes. A.M. and K.D. acknowledge support from NSF
Grants No. DMR 03-25939 �Materials Computation Center�
and No. DMR 03-14279, the Alfred P. Sloan foundation
�K.D.�, and a generous equipment award from IBM. Y.B.Z.
acknowledges support from the German Research Society
�DFG�. Y.B.Z. and K.D. thank the Kavli Institute of Theoret-
ical Physics at UC Santa Barbara for hospitality during the
final stages of this work and the NSF for partial support
under Grant No. PHY99-07949.

APPENDIX: DETERMINATION OF OMORI LAW OF
AFTERSHOCK DECAY

We derive the Omori law for aftershock decay from our
mean field earthquake model in the case of dynamic
strengthening. After a primary earthquake, the static failure
stress �s is increased by an amount 	
s� /N, where 
s� is the
mean event size. Given in terms of moment, the mean ava-
lanche size in mean field theory is simply given by �21�


s� = 

0

1/	2

s/s3/2ds � 1/	 �A1�

where 1/s3/2�D�s�, is the scaling behavior of the mean field
event size distribution. Now since 
s��1/	, the failure stress
�s is then shifted by an amount 1 /N.

In order to produce aftershocks, we assume that the new
larger failure stress, which we call � f

0, is lowered slowly,
logarithmically in time, until it returns to its original value
�s�� f

0−1/N. More precisely, using t=0 for the time at the
end of the previous earthquake, � f

0 decays as follows:

� f�t� = � f
0�1 − ln�1 + t�� . �A2�

We define 
�t� as the amount by which � f
0 has been lowered

at time t:


�t� = � f
0 − � f�t� = � f

0 ln�1 + t� . �A3�

Equation �A2� is only accurate to first order since lowering
the threshold triggers on average �
�t� aftershocks �assum-
ing nonsingular stress distributions�. Since aftershocks occur
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quickly compared to the weakening time scale, the after-
shocks that are triggered due to lowering the threshold will
cause � f�t� to shift up by: 
�t��	
s� /N�
�t� /N. Thus the
expression for � f�t� becomes

� f�t� = � f
0�1 − ln�1 + t�� + 
�t�/N �A4�

and Eq. �A3� gives


�t� = � f
0 ln�1 + t� − 
�t�/N , �A5�


�t� =
� f

0 ln�1 + t�
1 + 1/N

. �A6�

If we assume that the number of aftershocks triggered by
time t is A�t��
�t�, we obtain the modified Omori law �Eq.
�3�� for aftershock decay �3–5�:

�A�t�
�t

�
� f

0

�1 + t��1 + 1/N�
. �A7�

For large t and large N we have the original Omori law:

�A�t�
�t

�
� f

0

t
. �A8�
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